Empty convex polygons in almost convex sets
نویسندگان
چکیده
منابع مشابه
Empty convex polygons in planar point sets
The Erdős–Szekeres theorem inspired a lot of research. A frequent topic in this area is the study of the existence of so-called empty convex polygons in finite planar point sets. Let P be a finite set of points in general position in the plane. A convex k-gon G is called a k-hole (or empty convex k-gon) of P , if all vertices of G lie in P and no point of P lies inside G. Frequently we will mea...
متن کاملPebble Sets in Convex Polygons
Lukács and András posed the problem of showing the existence of a set of n − 2 points in the interior of a convex n-gon so that the interior of every triangle determined by three vertices of the polygon contains a unique point of S. Such sets have been called pebble sets by De Loera, Peterson, and Su. We seek to characterize all such sets for any given convex polygon in the plane. We first cons...
متن کاملEmpty Convex Hexagons in Planar Point Sets
Erdős asked whether every sufficiently large set of points in general position in the plane contains six points that form a convex hexagon without any points from the set in its interior. Such a configuration is called an empty convex hexagon. In this paper, we answer the question in the affirmative. We show that every set that contains the vertex set of a convex 9-gon also contains an empty co...
متن کاملCounting Convex Polygons in Planar Point Sets
Given a set S of n points in the plane, we compute in time O(n) the total number of convex polygons whose vertices are a subset of S. We give an O(m n) algorithm for computing the number of convex k-gons with vertices in S, for all values k = 3; : : : ;m; previously known bounds were exponential (O(ndk=2e)). We also compute the number of empty convex polygons (resp., k-gons, k m) with vertices ...
متن کاملPlanar Point Sets with a Small Number of Empty Convex Polygons
A subset A of a finite set P of points in the plane is called an empty polygon, if each point of A is a vertex of the convex hull of A and the convex hull of A contains no other points of P . We construct a set of n points in general position in the plane with only ≈ 1.62n empty triangles, ≈ 1.94n empty quadrilaterals, ≈ 1.02n empty pentagons, and ≈ 0.2n empty hexagons.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Periodica Mathematica Hungarica
سال: 2007
ISSN: 0031-5303,1588-2829
DOI: 10.1007/s10998-007-4121-z